2017 Spring POW Week #1 (2017-01)

2015 Sounggun Wee

March 8, 2017

Problem 1. Let A, B, C be $N \times N$ Hermitian matrices with C = A + B. Let $\alpha_1 \ge \cdots \ge \alpha_N, \beta_1 \ge \cdots \ge \beta_N, \gamma_1 \ge \cdots \ge \gamma_N$ be the eigenvalues of A, B, C, respectively. For any $1 \le k \le N$, prove that

$$\gamma_1 + \gamma_2 + \dots + \gamma_k \le (\alpha_1 + \alpha_2 + \dots + \alpha_k) + (\beta_1 + \beta_2 + \dots + \beta_k).$$

Solution. Let Γ_k^N be the set of all k-tuples of orthonormal vectors in \mathbb{C}^N , i.e., $\Gamma_k^N = \{(v_1, \ldots, v_k) \in (\mathbb{C}^N)^k : v_i^* v_j = \delta_{ij} \text{ for all } i, j\}$, where δ_{ij} is kronecker delta. Now we claim that if P is $N \times N$ Hermitian matrices then $\max_{(v_1, \ldots, v_k) \in \Gamma_k^N} \sum_{i=1}^k v_i^* P v_i$ exists and is equal to the sum of k largest eigenvalues of P. If this claim is true, then we can easily prove the goal inequality by

$$\max_{(v_1, \dots, v_k) \in \Gamma_k^N} \sum_{i=1}^k v_i^* C v_i \le \max_{(v_1, \dots, v_k) \in \Gamma_k^N} \sum_{i=1}^k v_i^* A v_i + \max_{(v_1, \dots, v_k) \in \Gamma_k^N} \sum_{i=1}^k v_i^* B v_i$$

$$\Rightarrow \gamma_1 + \gamma_2 + \dots + \gamma_k \le (\alpha_1 + \alpha_2 + \dots + \alpha_k) + (\beta_1 + \beta_2 + \dots + \beta_k).$$

At first, we need to mention that for any $v \in \mathbb{C}^N$, we have $\overline{v^*Pv} = (v^*Pv)^* = (v^*P^*v) = (v^*Pv)$ so $(v^*Pv) \in \mathbb{R}$. Additionally, the set Γ_k^N is a compact subset of $(\mathbb{C}^N)^k$ and the mapping $(v_1, \ldots, v_k) \mapsto \sum_{i=1}^k v_i^* P v_i$ is continuous. It implies the value $\max_{(v_1, \ldots, v_k) \in \Gamma_k^N} \sum_{i=1}^k v_i^* P v_i$ exists. Now we may assume that P is real diagonal matrix (the diagonal entries are exactly the list of the eigenvalues of P), because if Q is $N \times N$ unitary matrix and $(v_1, \ldots, v_k) \in \Gamma_k^N$ then $(Qv_1, \ldots, Qv_k) \in \Gamma_k^N$ holds. Moreover, we may assume the diagonal entries are sorted in descending order.

Let $v_i = (v_{i1}, \ldots, v_{iN})$ for each $i = 1, \ldots, k$ then we have $1 = ||v_i||^2 = \sum_{j=1}^N |v_{ij}|^2$ for each $i = 1, \ldots, k$. Also one can observe that $\sum_{i=1}^k |v_{ij}|^2 \le 1$ for each $j = 1, \ldots, N$. It is because if we make a $N \times N$ unitary matrix U which has v_1, \ldots, v_k as columns

then $U^*U=I=UU^*$ so every columns of U^* are orthonormal. Let $\lambda_1\geq \cdots \geq \lambda_N$ be the diagonal entries of P and let $l_j=\sum_{i=1}^k|v_{ij}|^2$ for $j=1,\ldots,N$ then $\sum_{i=1}^kv_i^*Pv_i=\sum_{j=1}^N\lambda_jl_j,\sum_{j=1}^Nl_j=k, 0\leq l_j\leq 1$ for all $j=1,\ldots,N$. By greedy algorithm, the value $\sum_{i=1}^kv_i^*Pv_i=\sum_{j=1}^N\lambda_jl_j$ is maximized when $l_1=\ldots,l_k=1,l_{k+1}=0,\ldots,l_N=0$. Actually, if we set $v_i=e_i$ for $i=1,\ldots,k$ then the value $\sum_{i=1}^kv_i^*Pv_i$ is maximized and equal to $\sum_{j=1}^k\lambda_j$. It proves the claim is true, and ends the proof.

2