POW 2022-22

2021____ Chae Jiseok

November 22, 2022

Let us define a new sequence $b_n=1+\sum_{k=1}^n \alpha_k^2$. Notice that if $\{a_n\}_{n\in\mathbb{N}}$ is a sequence of integers, then so is $\{b_n\}_{n\in\mathbb{N}}$. The given formula for $\{a_n\}_{n\in\mathbb{N}}$ asserts that $na_{n+1}=b_n$, hence $\{b_n\}_{n\in\mathbb{N}}$ satisfies the recurrence

$$b_{n+1} = b_n + a_{n+1}^2 = b_n + \frac{b_n^2}{n^2}.$$

This shows that, for $\{b_n\}_{n\in\mathbb{N}}$ to be a sequence of integers, each b_n should be divisible by n. Now fix any prime p, and consider the sequence $\{b_n\}_{n\in\mathbb{N}}$ modulo p. Then for n< p, from the recurrence relation derived above we should have

$$b_{n+1} \equiv b_n + b_n^2 n^{-2} \pmod{p} \tag{*}$$

which is well-defined as the multiplicative inverse of n modulo p always exists, and

$$b_{\mathfrak{p}} \equiv 0 \pmod{\mathfrak{p}}.$$

However, a direct computation using (*) shows that $b_{43} \not\equiv 0 \pmod{43}$. Therefore, there exists some $n \geqslant 1$ such that a_n is *not* an integer.

The counterexample p = 43 was found using the following Python 3 code.

```
primes = []
   p = 1
   while True:
      p += 1
      # find the next prime using sieve of Eratosthenes
      next_prime_found = False
      while not next_prime_found:
         composite = False
         for prev_p in primes:
10
             if prev_p ** 2 > p:
11
12
                break
             if p % prev_p == 0:
13
                composite = True
14
15
         if composite:
16
             p += 1
17
         else:
             primes.append(p)
19
20
21
      # test if p divides b_p using the recurrence relation
22
23
      for n in range(1, p):
24
         bn = bn + pow(bn * pow(n, -1, p), 2, p)
25
      if bn % p != 0:
26
         print(p)
27
         break
```